Course Code	BC	H201CCT4		Se	m	ester
Course title	Co	nceptual Organic Chemistry		1		
Scheme of Inst	ruct	ion	Scheme of Examination			
Total Duration	:	60 Hrs	Maximum Score		:	70
Periods / Week	:	4	Internal Evaluation		:	30
Credits	:	4	End Semester		:	70
Instruction	:	Lecture	Examination hours		:	3
Mode						Hrs

Course Objectives: Stereochemistry of organic compounds and knowledge of different types of reactions in organic compounds with their mechanism.

Course Outcomes: Acquaintance with differentiation among addition, substitution and elimination organic reactions. Concepts of organic oxidation and reduction reactions and stereochemistry.

Unit	Course Content	Instruction Hours
1	Stereochemistry	
	Isomerism, Classification of isomerism, Structural and stereo	
	isomerism, Geometrical and optical isomerism, requirements for	
	a molecule to show geometrical isomerism, Cis- trans isomerism,	
	Eand Z notation along with CIP rules for geometrical isomers.	15
	Optical activity, specific and molar rotation, chirality,	
	enantiomerism, diastereoisomerism, racemic mixtures and their	
	resolution by salt formation method. Relative and absolute	
	configuration, D & L nomenclature system for configuration of	
	carbohydrates, R and S configuration (upto two chiral centres).	
2	Addition Reactions	
	Addition reactions in alkenes and alkynes, hydrogenation,	

	addition of halogen Hydrohalogenation (Markovnikov,s and anti-	15
	Markovnikov,s addition) hydration, , Hydroboration- oxidation	
	and Oxymercuration- demercuration.Ozonolysis, Reactivity of	
	alkenes vs alkynes.	
	Addition reactions in aldehydes and ketones (formaldehyde,	
	acetaldehyde, benzaldehyde, acetone). Name reactions; aldol,	
	cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro.	
	Reaction.	
3	Substitution Reactions	
	Types of substitution reactions, Electrophilic substitution	
	reactions, General mechanism of electrophilic substitution	
	ractions (nitration, halogentaion, sulphonation, Friedal Crafts	
	alkylation and acylation), directive influence of substituent's.	15
	Nucleophilic substitution reactions, alkyl, allyl and benzyl	
	halides, substitution of halogen by some common nucleophiles.	
	Mechanism of SN^1 and SN^2 reactions, free radical substitution	
	reactions, halogenations of alkanes, allylic compounds and alkyl	
	benzenes.	
4	Elimination, Oxidation and Reduction Reactions	
	Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides	
	(dehalogenation), alcohols (Dehydration), Mechanism of E1 and	
	E2 reactions (nature of substrate and base). Oxidation of	
	alcohols with potassium permanganate, potassium dichromate,	
	catalytic dehydrogenation and Opppenauer oxidation and	
	oxidation of 1,2- diols with periodic acid and lead tetra acetate.	15
	Oxidation of aldehydes and ketones with potassium	15
	permanganate, sodium hypoiodite (iodoform reaction) and	
	Baeyer- villager oxidation.	
	Reduction of aldehydes and ketones, Catalytic hydrogenation,	
	reduction with sodium borohydride, lithium aluminium hydride,	
	Clemmensen, and Wolff- kishner reduction. Reduction of	
	carboxylic acids and their derivatives, lithium aluminium	
	hydride, sodium- ethanol and Rosenmund reduction. Reduction	

	of nitro compounds, Acidic, alkaline and neutral reducing agents,	
	lithium aluminium hydride and electrolytic reduction.	
Exam	nination and Evaluation Pattern :	
Text	Books and References :	
1	I. L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.	
2	R. T. Morrison & R. N. Boyd: Organic Chemistry, Pearson	
	Education.	
3	Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S.	
	Chand	
4	Peter Sykes: A Guide Book to Mechanism in Organic Chemistry,	
	Orient Longman.	
5	Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic	
	Compounds; Wiley: London, 1994. 6. T. W. Graham Solomon's	
	Organic Chemistry, John Wiley and Sons.	
6	P.S. Kalsi, Stereochemistry, Conformation and Mechanism, John	
	Wiley and Sons. 8. D. Nasipuri, Stereochemistry of Organic	
	Compounds, New Age International Publishers	

Course Code	BSCH150CCT2	Semester
Course title	Conceptual Organic Chemistry	1
Scheme of Instruc	ction	Scheme of Examination
Total Duration	: 60Hr	Maximum Score : 50
Periods /Week	: 4	Internal Evaluation : 15
Credits	: 2	End Semester : 35
Instruction Mode	: Lecture /Demonstration	Exam Duration : 3 Hrs

Course Objectives: Synthesis and qualitative analysis of organic compounds as well as the identification of inorganic elements.

Course Outcomes: Understanding the utility of qualitative inorganic and organic analysis procedures.

Unit	Course Content	Instruction	
		Hours	
	List of Experiments:		
	1. Detection of elements (X, N, S)		
	2. Functional group tests for alcohols, phenols, carbonyl and		
	carboxylic acid group		
	3. Qualitative analysis of unknown organic compounds containing		
	simple functional groups (alcohols, carboxylic acids, phenols and		
	carbonyl compounds)		
	4. Determination of optical activity by using polarimeter	60Hrs	
	5. To prepare p-bromo acetanilide		
	6. Nitration of nitrobenzene		
	7. Semicarbazone derivative of one the following compounds:		
	acetone, ethyl methyl ketone, diethylketone, cyclohexanone,		
	benzaldehyde.		
	8. Oxidation of benzaldehyde by using alkaline potassium		
	permanganate.		
	institution and Easther the Dettermine		
Examination and Evaluation Pattern :			
Text	Books and References :		

1	Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R.	
	Practical Organic Chemistry, 5th Ed., Pearson (2012)	
2	Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical	
	Organic Chemistry: Preparation and Quantitative Analysis,	
	University Press (2000).	

Course Code

	BCH 201CCT 4	Semester		
Course Title	Molecules of Life	2		
Scheme of Instruc	tion	Scheme of Examination		
Total Duration	: 60Hr	Maximum Score : 100		
Periods /Week	: 4	Internal Evaluation : 30		
Credits	: 4	End Semester : 70		
Instruction Mode	: Lecture	Exam Duration : 3 Hrs		

Course Objectives: In -depth studies regarding classification, properties and uses of biomolecules.

Course Outcomes: Better understanding about the relationship between structures and chemical properties of biomolecules. Significance of biomolecules and their applications in daily human life

Unit	Course Content	Instruction Hours
1	Carbohydrates:	
	Introduction, Classification of carbohydrates, Reducing and non-	
	reducing sugars, General properties of glucose and fructose, their	
	open chain structure. Epimers, anomers and muta rotation.	
	Determination of configuration of glucose (Fischer proof).	15
	Cyclic structure of glucpse. Haworth projections. Cyclic structure	
	of fructose. Chain lengthening and chain shortening of aldoses.	
	Linkage between monosachharides, structure of disachharides	
	(sucrose, maltose, lactose) and polysachhharides (starch and	
	cellulose) excluding their structure elucidation.	
2	Amino Acids, Peptides and Proteins:	
	Introduction, Classification of amino acids, general properties of	
	amino acids, Zwitterions structure and isoelectric point. Peptides,	15
	classification of peptides, Synthesis of simple peptides up to	
	dipeptides, Merrifield solid phase peptide synthesis.	
	Classification of proteins, Denaturation and renaturation of	
	proteins, Overview of primary, secondary , tertiary and	
	quaternary structure of proteins, determination of n- terminal	

	amino acid by DNFB and Edman method.	
3	Vitamins and Nucleic Acids:	
	Classification of vitamins, Sources of vitamins, diseases caused	
	by deficiency of vitamins, Detail study of structure of vitamin A	
	and C. Components of Nucleic acids, Adenine, guanine, thymine	15
	and cytosine (structure only), other components of nucleic acids,	
	Nucleosides and nucleotides (nomenclature), structure of	
	polynucleotide's, Structure of DNA (Watson- crick model) and	
	RNA and its type, Difference between DNA and RNA.	
4	Lipids, Oil and Fats:	
	Introduction to lipids, classification of lipids, Common fatty	
	acids present in oils and fats, omega fatty acids, trans fats,	
	hydrogenation, saponification value, Iodine number, Biological	
	importance of triglycerides, phospholipids, glycolipids and	
	steroids (cholesterol).	15
Exan	ination and Evaluation Pattern :	
Text	Books and References :	
1	Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling	
	Kindersley (India) Pvt. Ltd. (Pearson Education)	
2	Kindersley (India) Pvt. Ltd. (Pearson Education) Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley	
2	Kindersley (India) Pvt. Ltd. (Pearson Education)Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).	
2	Kindersley (India) Pvt. Ltd. (Pearson Education)Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S.	
2	Kindersley (India) Pvt. Ltd. (Pearson Education)Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S. Chand	
2 3 4	 Kindersley (India) Pvt. Ltd. (Pearson Education) Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S. Chand Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley 	
2 3 4	 Kindersley (India) Pvt. Ltd. (Pearson Education) Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S. Chand Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 	
2 3 4 5	 Kindersley (India) Pvt. Ltd. (Pearson Education) Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S. Chand Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Nelson, D. L. & Cox, M. M. Lehninger's Principles of 	
2 3 4 5	 Kindersley (India) Pvt. Ltd. (Pearson Education) Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S. Chand Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed., W. H. Freeman 	
2 3 4 5 6	 Kindersley (India) Pvt. Ltd. (Pearson Education) Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S. Chand Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed., W. H. Freeman Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 7th Ed., 	

Course Code BSCH 250CCT- 2

Semester

2

Course Title Molecules of Life

Scheme of Instruction		Scheme of Examination		
Total Duration	: 60Hr	Maximum Score	: 50	
Periods /Week	: 4	Internal Evaluation	: 15	
Credits	: 2	End Semester	: 35	
Instruction Mode	: Lecture /Demonstration	Exam Duration	: 3 Hrs	
Course Objectives	· Identification separation and d	letermination of organic co	mnounde	

Course Objectives: Identification, separation and determination of organic compounds of pharmaceutical importance.

Course Outcomes: The students will be capable to use chromatographic as well as volumetric methods for determination of biomolecules in different matrices.

Unit	Course Content	Instruction	
		Hours	
	List of Experiments:		
	1. Separation of amino acids by paper chromatography	60Hrs	
	2. To determine the concentration of glycine solution by formylation		
	method.		
	4. Resolution of water soluble vitaming from their by normal		
	has silica thin layer chromatography (NTLC)		
	5. To determine the saponification value of an oil/fat.		
	6. To determine the iodine value of an oil/fat		
	7. Differentiate between a reducing/nonreducing sugar.		
	8. Synthesis of aspirin by acetylation of salicylic acid and application		
	of TLC for its identification in drug sample.		
Exam	ination and Evaluation Pattern :		
Text	Books and References :		
1	Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R.		
	Practical Organic Chemistry, 5th Ed., Pearson (2012)		
2	Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical		
	Organic Chemistry: Preparation and Quantitative Analysis,		
	University Press (2000).		
3	Mann, F.G. & Saunders, B.C. Practical Organic Chemistry,		
	Pearson Education (2009)		

Semester-3

Course Code	BCH 3	601CCT4						
Course Title	Chemical	Bonding,	Transition	Metals	&	Coordinati	on	
	Chemistry							
Scheme of Instru	uction			Sch	eme	of Examina	tion	
Total Duration	: 60Hr			Max	ximı	um Score	: 10	00
Periods /Week	: 4			Inte	ernal	Evaluation	: 3	0
Credits	: 4			End	l Sei	nester	:	70
Instruction Mod	e : Lecture			Exa	m D	Juration	: 3	Hrs

Course Objectives: Extended physico- chemical knowledge about chemical bonding, transition elements and coordination chemistry.

Course Outcomes: Better understanding about the formation of organic and inorganic compounds through chemical bonding. Conceptual knowledge of complex compounds and physical as well as chemical aspects of transition metals.

Unit	Course Content	Instruction
		Hours
1	Chemical Bonding	
	Valence bond approach, Concept of resonance in various organic	
	inorganic compounds, Hybridization and structure, equivalent and r	
	equivalent hybrid orbital's, Bent's rule and its applications, VSEPR m	
	for predicting shapes of molecules and ions containing lone pairs si	15
	and pi bonds. LCAO method, symmetry and overlap for s-s, s-p and	
	combinations, MO treatment of homonuclear diatomic molecules of	
	period (B ₂ , C ₂ , N ₂ , O ₂ , F_2) and heteronuclear di-atomic molecules (
	NO) and their ions. Van der Waals forces, Hydrogen bonding and	
	applications, effects of these forces on melting point boiling point	
	solubility.	
2	Transition Elements (3d series)	

	Definition of transition Elements, General electronic configuration of	
	transition elements, Classification of transition elements , Physico-	15
	chemical properties of transition elements with reference to	
	electronic configuration, variable oxidation state (first and second	
	transition series), Ionisation energy, complex formation, magnetic	
	properties, catalytic properties, alloys formation and interstitial	
	compound formation, Preparation, properties and uses of KMnO4 and	
	K ₂ Cr ₂ O ₇ . Structure of K ₂ Cr ₂ O ₇ and K ₂ CrO ₄ .	
3	Coordination chemistry	
	Double salt , Complex compounds, Difference between double salts	
	and complex compounds, Types of complex compounds, Basic	
	terminology of coordination chemistry (ligands, types of ligands,	15
	central metal ion, oxidation state, coordination number), Werners	
	theory of complex compounds, IUPAC nomenclature of complex	
	compounds (Mono nuclear complex), Factors affecting the stability	
	of complex compounds, Isomerism in complex compounds,	
	Applications of complex compounds in analytical chemistry,	
	biological system and medicine. Bonding in complex compounds,	
	Valence bond theory, EAN rule.	
4	Crystal Field Theory	
	Introduction, Crystal field effect, Crystal field splitting diagram for	
	tetrahedral and octahedral complex. octahedral symmetry. Crystal	
	field stabilization energy (CFSE), Crystal field effects for weak and	
	strong fields. Tetrahedral symmetry. Factors affecting the magnitude	
	of D. Spectrochemical series. Comparison of CFSE for Oh and Td	15
	complexes, Tetragonal distortion of octahedral geometry	
Exan	nination and Evaluation Pattern :	
Text	Books and References :	
1	James E. Huheey, "Inorganic Chemistry: Principles of structure and	
	reactivity", Prentice Hall, IV Edition.	
2	D. S. Shriver and P.A. Atkins, "Inorganic Chemistry", Oxford	
	University Press, IV Edition	
3	Alan G. Sharpe, "Inorganic Chemistry", University of Cambridge, III	
L		

	Edition.	
4	J. D. Lee, "A New Concise Inorganic Chemistry", ELBS IV Edition	
5	B. Douglas, D. H. McDaniel and J. J. Alexander, "Concepts and	
	Models of Inorganic Chemistry", John Wiley and Sons, III Edition	
6	Rodgers, G.E. Inorganic & Solid State Chemistry, Cengage Learning	
	India Ltd., 2008.	

Course Code	BSCH 350CCP- 2	semester- 3
Course Title	Chemical Bonding, Transition	Metals & Coordination
	Chemistry	
Scheme of Instr	uction	Scheme of Examination
Total Duration	: 60Hr	Maximum Score : 50
Periods /Week	: 4	Internal Evaluation : 15
Credits	: 2	End Semester : 35

Course Objectives: Preparation of standard solutions, standardization of secondary standards

Exam Duration

: 3 Hrs

and the determination of desired constituent in a sample.

Instruction Mode : Lecture /Demonstration

Course Outcomes: Abreast with different units of concentration of solution, standardization processs and application of redox reactions in chemical analysis.

Unit	Course Content		Instruction Hours
	List	of Experiments:	
	1.	Standardization of NaOH solution (standard solution of	60Hrs
		oxalic acid to be prepared)	comb
	2.	Determination of concentration of carbonate and	
		bicarbonate present in a mixture.	
	3.	Standardization of KMnO4 solution (standard solution of	
	Mohr's salt to be prepared).		
	4. Determination of concentration of Fe(II) in Mohr's salt		
	and/or K2Cr2O7 using diphenylamine/ N-phenylanthranilic		
		acid as internal indicator (standard solution of K2Cr2O7 and	
	/or Mohr's salt to be prepared).		
	5.	Determination of concentration of Mg (II) & Zn (II) by	
		titrimetric method using EDTA.	
	6.	Determination of iron content in ores / alloys using	

	appropriate redox titration.		
	7. Determination of concentration of total hardness of a given		
	sample of water by complexometric titration		
	8. Preparation of complex compounds		
	i)Tetraamminecarbonatocobalt (III) jon ji) Potassium		
	tris(oxalate)ferrate(III) iii) Tetraamminecopper (II)		
	sulphate		
	Sulphate,		
Exam	nination and Evaluation Pattern :		
Toyt	Pooks and Poferances :		
Text.	Books and Kelelences.		
1	Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th		
	Ed Pearson 2009		
2	Vogel, A.I. A Textbook of Quantitative Inorganic Analysis,		
	ELBS.		
3	Harris, D.C. & Freeman, W.H. & Co. Quantitative Chemical		
	Analysis 7th Ed., New York		

Course Code BCH 401CCT4

Semester

4

Course Title Physical Chemistry for the Biosciences

Scheme of Instruction		Scheme of Examination		
Total Duration	: 60Hr	Maximum Score : 100)	
Periods /Week	: 4	Internal Evaluation : 30		
Credits	: 4	End Semester : 7	0	
Instruction Mode	: Lecture	Exam Duration : 3 H	Hrs	

Course Objectives: Studies of thermal and kinetic aspects of chemical reactions.

Course Outcomes: Accumulation of knowledge about the roles of temperature, pH, reaction media and catalysis on the progress of chemical reactions.

Unit	Course Content	Instruction
		Hours
1	Chemical Energetics	
	Laws of Thermodynamics, important principles and definitions of	
	thermochemistry. Concept of standard state and standard enthalpies of	
	formation, integral and differential enthalpies of solution and dilution.	
	Calculation of bond energy, bond dissociation energy and resonance	15
	energy from thermochemical data. Variation of enthalpy of a reaction	
	with temperature - Kirchhoff's equation. Statement of Third Law of	
	thermodynamics and calculation of absolute entropies of substances.	
2	Chemical and Ionic Equilibrium	
	Free energy change in a chemical reaction. Thermodynamic	
	derivation of the law of chemical equilibrium. Distinction between	
	ΔG and ΔGo , Le Chatelier's principle. Relationships between Kp, Kc	
	and Kx for reactions involving ideal gases.	
	Strong, moderate and weak electrolytes, degree of ionization, factors	15
	affecting degree of ionization, ionization constant and ionic product	
	of water. Ionization of weak acids and bases, pH scale, common ion	
	effect. Salt hydrolysis-calculation of hydrolysis constant, degree of	
	hydrolysis of different salts. Buffer solutions. Solubility and solubility	
	product of sparingly soluble salts.	
3	Chemical Kinetics	
	Rate of reaction, Unit of rate of reaction, rate constant and specific	

	rate constant, Rate law, Order of reaction, Differential and integrated	
	form of rate expression up to second order reaction, Experimental	15
	methods of determination of rate laws, kinetics of complex reaction	
	(integrated rate expression up to first order only), Molecularity of a	
	reaction, Molecularity of a complex reaction. Temperature	
	dependence of reaction rates, Arrhenius equation, Activation energy,	
	Deferent methods of calculation of activation energy. Collision theory	
	of reaction rate. Numerical problem based on activation energy.	
4	Surface Chemistry and Colloids	
	Adsorption, Absorption, Types of adsorption, Difference between	
	physical and chemical adsorption, Factors affecting adsorption,	
	adsorption isotherms, Freundlich and Langmuir adsorption	
	isotherms, Applications of adsorption.	
	Difference between collods and true solution. Classification of	15
	colloids on the basis of nature of dispersed phase and dispersion	
	medium, on the basis of interaction between dispersed phase and	
	dispersion medium, Methods of preparation of colloids by Chemical	
	methods, Properties of colloids, Brownian movement, Tyndal effect,	
	Electrophoresis, Gold number, Application of colloids, Emulsion,	
	types of emulsion, Identification of emulsion, application of	
	emulsion.	
Exan	nination and Evaluation Pattern :	
Text	Books and References :	
1	Atkins P. W. & Paula J. de Atkin's Physical Chemistry 9th Ed	
	Oxford University Press (2011)	
2	Ball D W Physical Chemistry Thomson Press India (2007)	
3	Alan G Sharpe "Inorganic Chemistry" University of	
	Cambridge III Edition	
4	Castellan G W Physical Chemistry 4th Ed Narosa (2004)	
5	Chang P Physical Chemistry for the Biosciences University	
	Science Books (2005)Edition	
6	Duri & Sharma	
0		

Course Code BSCH 450CCP- 2		Semester		
Course Title	Physical Chemistry for the Bioscience	es 4		
Scheme of Instru	iction	Scheme of Examination		
Total Duration	: 60Hr	Maximum Score : 50		
Periods /Week	: 4	Internal Evaluation : 15		
Credits	: 2	End Semester : 35		
Instruction Mode	e : Lecture /Demonstration	Exam Duration : 3 Hrs		

Course Objectives: Application of thermo analytical and electro analytical techniques in quantitative analysis.

Course Outcomes: Awareness about the utility of various physico- chemical, optical and chemical methods in chemical analysis.

Unit	Course Content	Instruction
		Hours
	List of Experiments:	
	1.Determination of heat capacity of a calorimeter for different	60Hrs
	volumes.	
	2. Determination of the enthalpy of neutralization of hydrochloric acid with sodium hydroxide	
	 Preparation of sodium acetate-acetic acid buffer solutions and measurement of their pH. 	
	4. Potentiometric titrations of (i) strong acid vs strong base (ii) weak acid vs strong base	
	5. Determination of dissociation constant of a weak acid.	
	6. Integrated rate method: a. Acid hydrolysis of methyl acetate with	
	hydrochloric acid. b. Saponification of ethyl acetate	
	7. Verification of Lambert-Beer's Law for potassium dichromate/ potassium permanganate solution.	
	8. Verify the Freundlich and Langmuir isotherms for adsorption	
	of acetic acid on activated charcoal.	
Exam	ination and Evaluation Pattern :	,
Text	Books and References :	
1	Khosla, B.D.; Garg, V.C.; Gulati, A. & Chand, R. Senior	
	Practical Physical Chemistry, New Delhi	

Course Code	BCH 601DST 4	Semester
Course Title	Bioinorganic & Environmental Chemi	stry 5
Scheme of Instru	uction	Scheme of Examination
Total Duration	: 60Hr	Maximum Score : 100
Periods /Week	: 4	Internal Evaluation : 30
Credits	: 4	End Semester : 70
Instruction Mode	e : Lecture	Exam Duration : 3 Hrs
~ ~ ~		

Course Objectives: Impact of inorganic metal ions and air pollutants on environment and human health. Remedial steps for pollution control.

Course Outcomes: Better understanding about the composition of atmosphere, hydrosphere and biosphere. Awareness about the impact of inorganic ions on environment and human health. Concept of green chemistry in pollution control.

Unit	Course Content	Instruction Hours
1	Bio-Inorganic Chemistry	
	A brief introduction to bio-inorganic chemistry. Role of metal	
	ions present in biological systems with special reference to Na ⁺ ,	
	K^+ and Mg^{2+} ions: Na/K pump; Role of Mg^{2+} ions in energy	15
	production and chlorophyll. Role of Ca ²⁺ in blood clotting,	
	stabilization of protein structures and structural role (bones).	
2	Environment and its segments	
	Ecosystems. Biogeochemical cycles of carbon, nitrogen and	
	sulphur.	
	Air Pollution: Major regions of atmosphere. Chemical and	
	photochemical reactions in atmosphere. Air pollutants: types,	
	sources, particle size and chemical nature; Photochemical smog:	
	its constituents and photochemistry. Environmental effects of	15
	ozone, Major sources of air pollution SO ₂ , CO ₂ , CO, NOx, H ₂ S	
	and other foul smelling gases. Methods of estimation of CO,	
	NOx, SOx Effects of air pollution on living organisms and	
	vegetation. Greenhouse effect and Global warming, Ozone	
	depletion by oxides of nitrogen, chlorofluorocarbons and	
	Halogens, removal of sulphur from coal. Control of particulates.	

3	Water Pollution	
	Sources and nature of water pollutants, Techniques for measuring	
	water pollution, Impacts of water pollution on hydrological and	
	ecosystems. Water purification methods. Industrial effluents	
	from the following industries and their treatment: electroplating,	15
	textile, tannery, dairy, petroleum and petrochemicals, agro,	
	fertilizer, etc. Sludge disposal. Water treatment and purification	
	(reverse osmosis, electro dialysis, ion exchange). Water quality	
	parameters for waste water, industrial water and domestic water.	
4	Energy & Environment	
	Sources of energy: Coal, petrol and natural gas. Nuclear Fusion /	
	Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of	
	nuclear waste, nuclear disaster and its management. Introduction	
	to biocatalysis: Importance in "Green Chemistry" and Chemical	
	Industry.	15
Exam	nination and Evaluation Pattern :	
Exam Text	nination and Evaluation Pattern : Books and References :	
Exam Text	ination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.	
Exam Text	 anination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical 	
Exam Text	hination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi.	
Exam Text 1 2 3	 ination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & 	
Exam Text 1 2 3	hination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi.	
Exam Text 1 2 3 4	 anination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. A.K. De, Environmental Chemistry: New Age International Pvt., 	
Exam Text 1 2 3 4	 anination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 	
Exam Text 1 2 3 4 5	 anination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. A. Mishra, Environmental Studies. Selective and Scientific 	
Exam Text 1 2 3 4 5	 anination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. A. Mishra, Environmental Studies. Selective and Scientific Books, New Delhi (2005). 	
Exam Text 1 2 3 4 5 6	 anination and Evaluation Pattern : Books and References : E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. A. Mishra, Environmental Studies. Selective and Scientific Books, New Delhi (2005). S. M. Khopkar, Environmental Pollution Analysis: Wiley Eastern 	

MANUU - Department of Chemistry School of Sciences

Course Code	BCH 502 DST 4	Semester	
Course Title	Analytical Methods in Chemistry	6	
Scheme of Instru	action	Scheme of Examination	
Total Duration	: 60Hr	Maximum Score : 100	
Periods /Week	: 4	Internal Evaluation : 30	
Credits	: 4	End Semester : 70	
Instruction Mode	e : Lecture	Exam Duration : 3 Hrs	

Course Objectives:

To kindle confidence in students for better understanding of basic concepts of classical and modern analytical methods of chemical analysis as well as to keep abreast with developments of recent techniques of analysis.

Outcomes : The knowledge of fundamental principles of each analytical method of analysis with possible applications will induce great confidence among students to utilize different analytical techniques in chemical analysis.

Unit	Course Content	Instruction Hours
1	Analytical Chemistry and Statistical Analysis of Analytical	
	Data	
	Introduction and importance of analytical chemistry. Role of	
	instrumentation in chemical analysis. Collection, arrangement	
	and analysis of analytical data. Types and sources of errors of	15
	analytical data, determinate and indeterminate errors, absolute	
	and relative errors. Normal (or Gaussian error cure), accuracy	
	and precision, statistical terms (mean, median, median deviation,	
	standard deviation and variance). criteria of validity or rejection	
	of result. Numerical problems.	
2	UV- Visisble spectrometry: Interaction of radiation with	
	matter and types of electron transitions. Chromophores and	

	auxochrome groups. UV- Visible spectrometry : Validity of	15
	Beer- Lambert's law. Basic principles of instrumentation	
	(choice of source, monochromator and detector) , Single and	
	double beam instruments. Application in quantitative analysis,	
	estimation of metal ions from aqueous solution, geometrical	
	isomers, determination of composition of metal complexes using	
	Job's method of continuous variation and mole ratio methods.	
	Deviation from Beer,s law and photometric titrations.	
3	IR and atomic Absorption / Emission Techniques:	
	Infrared spectrometry; basic principles of instrumentation	
	(choice of source, monochromator & detector) for single and	
	double beam instruments, sampling techniques. Structural	15
	illustration through interpretation of data, effect of hydrogen	
	bonding. Flame atomic absorption and emission spectrometry:	
	principle and applications in quantitative estimation of trace level	
	of metal ions from water samples. Sources of chemical	
	interferences and their methods of removal.	
4	Separation Techniques :	
	Qualitative and quantitative aspects of solvent extraction:	
	extraction of metal ions from aqueous solution, extraction of	
	organic species from the aqueous and non- aqueous media.	
	Chromatography: Classification, principle and efficiency of the	
	technique. Mechanism of separation: adsorption, partition &	15
	ion – exchange mechanism. Bonded phases and reversed phase	
	chromatography. Qualitative and quantitative aspects of	
	chromatographic methods (IEC, GLC, GPC and HPLC /	
	HPTLC). Chromatographic parameters(capacity factor,	
	separation factor and resolution). Applications of	
	chromatography techniques in metal ion separation, deionization	
	of water and analysis of polymers, pharmaceutical products,	
	bimoleculess and stereoisomer's.	

Exam	Examination and Evaluation Pattern :		
Text	Books and References ·		
1	E Stocchi: Industrial Chamistry Vol I Ellis Horwood I to IIK		
1	E. Stocchi. Industrial Chemistry, Vol-1, Ellis Horwood Etd. OK.		
2	R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical		
	Processes, Wiley Publishers, New Delhi.		
3	S. S. Dara: A Textbook of Engineering Chemistry, S. Chand &		
	Company Ltd. New Delhi.		
4	A.K. De, Environmental Chemistry: New Age International Pvt.,		
	Ltd, New Delhi.		
5	A. Mishra, Environmental Studies. Selective and Scientific		
	Paalza Naw Dalhi (2005)		
	BOOKS, New Denni (2003).		
6	S. M. Khopkar, Environmental Pollution Analysis: Wiley		
	Eastern Ltd, New Delhi.		

CourseCode BCH551DST 2				Semester
Course Title		Analytical Methods in Chemist	ry	6
Scheme of Instruct	tic	on	Scheme of Examinati	on
Total Duration	:	60Hr	Maximum Score :	50
Periods /Week	:	4	Internal Evaluation :	15
Credits	:	2	End Semester	: 35
Instruction Mode	:	Lecture /Demonstration	Exam Duration :	3 Hrs

Course Objectives: To use of volumetric methods of analysis for determination of analytes of different types in water samples.

Course Outcomes: The students will understand the various steps involved in volumetric analysis and gain knowledge of deciding proper method for estimation of desired constituents in specific sample.

Unit	Course Content	Instruction Hours	
	1. Determination of dissolved oxygen in water.		
	2. Determination of Chemical Oxygen Demand (COD)		
	3. Determination of Biological Oxygen Demand (BOD)		
	4. Percentage of available chlorine in bleaching powder		
	5. Measurement of chloride, sulphate and salinity of water	60	
	samples by simple titration method (AgNO3 and potassium		
	chromate)		
	6. Estimation of total alkalinity of water samples (CO_3^{2-}, HCO_3^{-})		
	using double titration method		
	7. Measurement of dissolved CO ₂ .		
	8.Preparation of borax/ boric acid. Separation of mixtures by		
	chromatography: Measure the R_f value in each case.		
	(Combination of two ions to be given).		
Examination and Evaluation Pattern :			
Text	Books and References :		
1	E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.		
2	R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical		
	Processes, Wiley Publishers, New Delhi.		
3	S. S. Dara: A Textbook of Engineering Chemistry, S. Chand &		
	Company Ltd. New Delhi.		
4	A.K. De, Environmental Chemistry: New Age International Pvt.,		
	Ltd, New Delhi.		
5	A. Mishra, Environmental Studies. Selective and Scientific		
	Books, New Delhi (2005).		
6	S. M. Khopkar, Environmental Pollution Analysis: Wiley Eastern		

Ltd, New Delhi.